Click to Skip Ad
Closing in...

Astronomers finally figured out how Pluto cools itself

Published Jun 8th, 2025 10:30AM EDT
pluto hanging in space
Image: Dima_zel/Getty Images

If you buy through a BGR link, we may earn an affiliate commission, helping support our expert product labs.

Pluto might be small and distant, but it keeps surprising scientists. After the New Horizons spacecraft zipped past it in 2015, we got our first real look at its icy landscape and unexpectedly active atmosphere. But even with those discoveries, one question lingered in scientists’ minds. How does Pluto regulate its temperature with such a strange environment?

Well, thanks to new data from the James Webb Space Telescope, researchers say they may have found the answer, and it’s pretty wild. Where most planets rely on gases in the atmosphere to regulate their temperatures, researchers believe that Pluto cools itself using haze particles.

See, Pluto’s atmosphere is incredibly thin and made mostly of nitrogen, with traces of methane and carbon monoxide. What makes it special isn’t just its composition, but the presence of a constant haze. This haze is made up of tiny particles, and if the data from James Webb is correct, it does more than just drift around in the cold.

Normally, planetary atmospheres manage temperature through movement and properties of gas molecules, as I mentioned before. But Pluto cools itself differently. As sunlight hits the planet, the haze particles absorb energy and rise. When they cool, they sink again. This up-and-down cycle helps manage the planet’s heat, keeping the atmosphere in a delicate balance.

No other world cools itself this way, as far as we know.

The idea is kind of crazy, but it also isn’t unprecedented. Researchers actually proposed it a few years ago, before we had any proof. That’s where James Webb comes in. Recent observations focused on Pluto using mid-infrared wavelengths. The telescope detected the exact type of thermal signals that scientists had predicted.

The haze in Pluto’s atmosphere was indeed radiating heat, just as the theory suggested it would. But these findings tell us more than how Pluto cools itself. They will also force scientists to rethink what’s possible for other hazy worlds. Moons like Titan and Triton, for instance, also have nitrogen-heavy atmospheres and thick hazes. They could be managing their heat in similar ways.

There’s also a deeper link to our own planet. Researchers say Earth’s early atmosphere may have looked more like Pluto’s, filled with nitrogen and hydrocarbons. By studying how Pluto’s haze behaves, researchers might uncover clues about how conditions to support life first formed here on Earth.

Josh Hawkins has been writing for over a decade, covering science, gaming, and tech culture. He also is a top-rated product reviewer with experience in extensively researched product comparisons, headphones, and gaming devices.

Whenever he isn’t busy writing about tech or gadgets, he can usually be found enjoying a new world in a video game, or tinkering with something on his computer.